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FOREWORD

In September 1986, the Fuels Branch of the Aero Propulsion and
Power Laboratory at Wright-Patterson Air Force Base, Ohio,
commenced an investigation of the potential for production of jet
fuels from the liquid by-product streams produced by the
gasification of lignite at the Great Plains Gasification Plant
located near Beulah, North Dakota. Funding was provided to the
Department of Energy (DOE) Pittsburgh Energy Technology Center
(PETC) to administer the experimental portion of this effort.
This report details the efforts of Penn State University, as a
contractor to DOE/PETC, (DOE Contract Number DE-AC22-88PC88827) *
investigated the stability of organo-oxygen compounds and coal
derived jet fuels. DOE/PETC was funded through Military
Interdepartmental Purchase Request (MIPR) FY1455-86-NO657. Mr.
William E. Harrison III was the Air Force Program Manager, Dr.
Nand Narain was the DOE/PETC Program Manager, and Dr. Harold
Schobert was the Penn State Program Manager.
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SUMMARY

The principal objectives of this study were to investigate the thermal
stability of a suite of alkylated phenols as typical trace contaminants in iet fuels
and to determine the thermal stability of various fractions of a coal-derived and
a petroleum-derived JP-8 jet fuel as well as the thermal stability of the
unfractionated fuels. The thermal treatment experiments were carried out in
nitrogen and air atmospheres (100 psig cold) using 15 mi microautoclave
reactors. The reactors were heated in a fluidized sand bath at temperatures
ranging from 150°C to 450°C. The samples of the coal-derived and petroleum-
derived jet fuels were separated into five distillate fractions and these fractions
were characterized by high-resolution gas chromatography-mass spectrometry
(GC-MS). The thermal treatment products from the alkylated phenolis were
analyzed by 'H and 13C Nuclear Magnetic Resonance (NMR) spectroscopy
and GC-MS.

The analysis of the treatment products from the alkylated phenols has
shown that the thermal degradation reactions involve dealkylation and
rearrangement of alkyl groups on the aromatic rings and coupling of the
partially dealkylated rings to form multi-ring molecules with varying degrees of
alkyl substitution. It has been suggested that these high-molecular-weight
complex molecules are the precursors to the solid deposits formed by thermal
stressing. A comparison of the appearance and the NMR spectra of the reaction
products has indicated that the 2,4,6-trimethyiphenol is the most stable and the
2,4,6-tri-t-butylphenol is the most reactive compound among the alkylated
phenols studied. In general, the methylphenols have been found to have a
higher thermal stability in both inert and oxidizing atmospheres than the t-

butylphenois.




The high-resolution GC-MS analysis of the distillate fractions of a coal-
derived and a petroleum-derived JP-8 jet fue! has shown that the two fuels
have distinctly different chemical constitution. The petroleum-derived fuel
consists mainly of long-chain paraffins mixed with low concentrations of
alkylbenzenes and alkyinaphthalenes, while the coal-derived fuel appeared to
contain monocyclic and bicyclic alkanes and some hydroaromatic compounds
as the major components.

A spectrophotometric analysis of the products obtained from the distillate
fractions of both fuels in nitrogen and air atmospheres has pointed out
significant differences in thermal reactivity of the corresponding distillate
fractions. In general, the distillate fractions of the petroleum-derived fuel
appeared to be more stable than the coal-derived fuel especially in oxidizing
atmospheres and at high temperatures. The unfractionated fue! samples has
displayed a parallel trend in terms of thermal stability. A comparison of the
thermal stability of the corresponding distillate fractions in air has suggested
that the lower thermal stability of the coal-derived fuel is due to the
comparatively high thermal reactivity of the low-boiling fractions of this fuel. For
both petroleum-derived and coal-derived fuels, the unfractionated JP-8's
appeared to be more stable than the most stable distillate fraction indicating a
synergistic effect of the coexistence of the different distillate fractions in the

constitution of the whole fuels.




The overall objective of this program is to investigate the effect of
chemical components on the thermal stability of jet fuel. Specific objectives
include the determination of the high temperature thermal stability of a suite of
model compounds typical of those present as trace contaminants in the fuel,
investigation of the thermal stability of various fractions of a coal-derived and a
petroleum-derived JP-8 jet fuel, the determination of the thermal stability of the
unfractionated fuels, and the development of the relationship between the
stability of the whole material and the behavior of model compounds of fuel

fractions.




Jask 1. Thermal Treatment of Model Compounds

Six alkylated phenols and benzofuran have been selected as model
compounds for thermal treatment. Figure 1 shows the selected phenols
indicating the variation in the degree of alky! substitution and the size of the
alkyl groups ranging from a dimethylphenol to a tri-t-butylphenol. These
variations were considered to influence the thermal stability of phenols primarily
because of a selective blockage of the activated ortho and para positions as
well as the steric hindrance of the OH groups. The 2,4,6-trimethyiphenol was
added to the list of model compounds in the fourth quarter based on the results
obtained from the thermal treatment of especially 2,6-dimethylphenol and 2,4,6-
tri-t-butylphenol.

The model compounds have been heat treated in 15 ml, 316 stainless
steel microautoclave reactors in nitrogen and air atmospheres at temperatures
between 150 and 450 °C for 1 to 83 hours. Prior to thermal treatment
experiments, the reactors were loaded with approximately 3 g of samples and
after flushing with nitrogen they were pressurized with nitrogen (or air) to 100
psig. The loaded reactors were immersed in a fluidized bed of sand heated to
the treatment temperature. A motor driven rocking mechanism attached to the
reactor holder provided a vertical agitation of the reactors at a frequency of
200 cycles/min with and amplitude of 1 inch. After the reaction time elapsed,
the reactors were quenched in a water bath. Following depressurization, the
reactors were opened for recovering the reaction products.

A number of experiments were carried out in glass lined reactors to
assess the effect of the metallic surface on thermal stability of the compounds.
The results of these experiments discussed in the following section showed that

the chemistry of the treatment products obtained without using the glass liners
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Figure 1. Model compounds selected for thermal treatment.
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was not very different from that obtained by using the glass liners. It was
evident, however, that the rate of thermal degradation was slightly higher in the
absence of glass liners.

In most cases the thermal treatments have led to distinct changes in the
appearance of the starting materials the extent of which depends upon the
severity of the treatment. These changes, which are summarized in Appendix A
for all the model compounds treated in nitrogen, included the formation of
discolored liquids from solid precursors (i.e., 2,6-di-t-butylphenol, 2,6-di-t-butyl-
4-methylphenol and 2,4,6-tri-t-butylphenol), darkening of color in the products
from liquid precursors (i.e., 2-t-butylphenol and benzofuran), and formation of
solids (from 2,4,6-tri-t-butylphenol and benzofuran treated at 400 and 450 °C).
Among the phenols, 2,6- dimethylphenol and 2,4,6-trimethylphenol did not
show any significant change in appearance even after treatment at 450 °C for 1
h. The 2,4,6 tri-t-butylphenol, on the other hand, showed the most extensive
change producing solids upon treatment at 400 and 450°C. The other t-butyl
phenols did not produce any solids under these conditions. Benzofuran
appeared to produce some sediments at 400 and 450 °C.

The thermal treatments in air gave rise to more extensive changes in the
appearance of the products under the same conditions, as shown in Appendix
B. In general, the presence of air appeared to have increased the rate of
thermal degradation, compared to that in nitrogen, causing the formation of
sediments from almost all the phenols at 350 and 400°C. Notably, 2,6-dimethy!
phenol, which has a high thermal stability in nitrogen, showed a substantial
change in structure upon treatment in air, from white crystals into a dark brown
liquid. The 2,4,6-trimethyiphenol, however, showed a remarkable stability also

in the presence of air.




The reaction products from the thermal treatments in nitrogen and in air
have been analyzed by NMR and GC-MS. The results of these analyses were
presented and discussed in detail in the second and fourth quarterly reports.
Main conclusions from these analyses are presented in separate sections

below.

NMR Analysis of Reaction Prod

1H and 13C NMR spectra of the thermal treatment products were taken
on a Bruker-200 pulse FT NMR spectrometer by Dr. Alan Freyer of the Penn
State Chemistry Department. NMR samples were prepared by dissolving 200
mg of samples in 2 g of CDCl3. Although the reaction products from the thermal
treatment of the model compounds contained a large number of different
compounds, as indicated by their GC-MS spectra, some general reaction trends
were still discernible by comparing the NMR spectra of the starting materials
and the reaction products. The band assignments for different hydrogen and
carbon types used in the analysis of the NMR spectra are given in Tables 2
and 3.

In order to elucidate the effect of glass liners, the thermal treatment
products obtained with and without using the liners have been analyzed by
NIiR spectroscopy. Appendix C contains 1H and 13C spectra of the six
compounds treated at different temperatures ranging from 350 to 450°C with
and without tha glass liner in the reactors. The comparison of the spectra
showed that the use of glass liners did not produce any substantial change in
the composition of the thermal treatment products. In general, the
corresponding spectra contained the same peaks with slight differences in their

relative intensities. The products obtained without the glass liners generally




Table 1. Band assignments for hydrogen types distinguishabie by TH NMR [1].
Shift Range

Assignment
9.0-6.0 Aromatic
55-47 Olefinic
55-45 Phenolic
45-33 Methylene groups o to two rings
33-20 Hydrogen on carbon atoms a to ring
20-1.6 Naphthenic methylene and methine .
(other than « to ring)
16-1.0 Methylene B or more remote from ring,
methyl groups B to ring
1.0-05 Methy! y or further from ring

Table 2. Band assignments for carbon types distinguishable by 13C NMR [1].

Shift Range
{ppm from TMS) Assignment
165 -158 Aromatic ether C-O
158 -148 Phenol C-O
148 -129 Aromatic C-C
129 -118 Aromatic C-H
118 -108 Aromatic C-H ortho to ether O, and OH
53 -37 Methylene bridge carbon, bridgehead C of
naphthenes and branched alkyls
37-30 CH a to aromatic ring other than CH3
30-23 Certain C B to aromatic ring
23-19 CH3 a to aromatic ring
19-17 CHg3 of ethyl
17 - 13 CHa3 vy further from aromatic ring

1. K. D. Bartle and D. W. Jones, in "Analytical Methods for Coal and Coal
Products,"(C.Karr, Jr., Ed.), Academic Press, N Y, Vol.1, 557, 1978.




showed a higher extent of thermal degradation as evident from the slightly
higher intensities of the peaks arising from the functionalities produced by
thermal treatment . There is no other discemible trend of change in the
corresponding spectra with the changing temperature or reaction time.

As examples, Figures 2 and 3 compare the spectra of the products
obtained from 2-t-butylphenol ai 350°C for 2 h within and without the glass
liners. Although the scale and the resolution of the corresponding sets of
spectra are different , a reasonably good comparison can still be made between
the respective spectra. The aliphatic regions of the 1TH NMR spectra in Figure 2
show that in both cases the treatment of 2-t-butylphenol results in the
appearance of the same peaks on either side of the original t-butyl peak at 1.6
ppm. The major peaks that appear at 1.1 ppm and 1.4 ppm can be attributed to
CH2 groups B to aromatic rings and those between 2.0 and 3.0 ppm to
hydrogens on carbon atoms a rings. The corresponding 13C spectra in Figure
3 show similar structural features in both cases; 23 ppm peak assigned to a
CHg and those at 34 and 39 ppm to CHz groups o and P to rings. The product
obtained without the glass liner shows an additional peak at 1.9 ppm in the 1H
spectrum and one at 24 ppm in the 13C spectrum. These peaks can be
explained by further methyl substitution of the aromatic rings at a higher extent
of the degradation reactions in the absence of the glass liners. The aromatic
regions of the 13C NMR spectra of both products show the presence of the
same peaks with slight differences in their relative intensities. The differences
observed in the phenolic H signais between 4.5 and 6.5 ppm in Figure 1 can
be attributed to the difference in the resolution of the respective spectra.

The examination of the 1H and 13C NMR spectra of the products from the
phenols treated in nitrogen at temperatures between 250-400 °C has shown

that, except for 2,6-dimethyl phenol and benzofuran, the treatments have
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Figure 3.  13C NMR spectra of the products from 2-t-butylphenol treated at
350°C for 2 h in reactors with (top) and without (bottom) glass
liners.
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produced significant chemical changes above 300°C. The overali reaction
trends appear to be similar for all the tertiary butyl phenols with distinct
differences in the extent of the prevailing chemical changes depending upon
the severity of the thermal treatment. The principal reaction trends involve the
loss of t-butyl groups, methylation of the aromatic rings (methyi groups being
formed on the same site as the t-butyl group through cleavage of t-butyl groups
or on other sites via substitution of aromatic hydrogen by methy! groups formed
by cleavage of t-butyl groups) and coupling of the aromatic rings with the
formation of methylene bridges. These reactions lead to the formation
unsubstituted or methy! substituted phenols as well as the oligomers of partially
dediiylaad t-butylphenois. For example, based on the NMR and related GC-
MS spectra, the 350 °C - 4 h product from 2-t-butylphenol consists mainly of the

compounds shown below in addition to the unreacted material.

Q @ Qhal

0] H

The treatment of 2-t-butylphenol at a higher temperature (400 °C for 1.5
h) gave a product consisting also of phenol, methyl substituted phenols and
conjugated methyl substituted phenols. The conjugated molecules in this case
appeared to be connected either by a single methylene bridge or by a
combination of a biaryl linkage and a methylene bridge as in fluorene.

When the treatment temperature was increased to 450°C , benzofuran
showed some clear chemical changes. The NMR spectra of benzofuran
products indicate that the initial degradation reactions invoive the rupture of the

five-membered ring producing alkyl substituted benzenes as well as phenols.
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The 2,6-dimethylphenol, on the other hand, did not show any significant
chemical change even at 450°C for a duration of 1 h.

Since the initial reactions during the treatment of the t-butylphenols
invoive the loss of alkyl groups, it was considered that the change in the ratio of
aliphatic to aromatic hydrogen as a function of treatment severity can be used
for a more quantitative comparison of the thermal stability of these compounds.
In order to compare the relative effects of different temperature-time
combinations, a treatment severity index was formulated as TSI =A exp(-E/RT) t,
by assuming Arrhenius type rate constants, where A and E are constants, T is
the temperature and t is the time for the treatment, and R is the gas constant. A
and E were, somewhat arbitrarily, selected to be 1017 h-1 and 50 kca/mole,
respectively. The whole purpose of formulating TSI is to compars the relative
severity of different treatments on an arbitrary scale. Figure 4 shows a plot of
HayHar ratio of the thermal treatment products versus TSI at low values of TSI for
all the t-butyl- phenols used in this study. It can be seen that different t-
butylphenols display different slopes for the change in the ratio of aliphatic to
aromatic hydrogen in the reaction products as a function of TSI at low severity.
It can be seen that the slope of plotted lines increases with the increasing
degree of substitution on the aromatic rings. Based on this observation and the
appearance of the treatment products (discoloration, formation of solids etc.,), it
was concluded that the thermal reactivity of the t-butyl phenols increases with
the increasing degree of alkyi substitution on the aromatic ring. It should be
noted that this trend does not apply to methylphenaols; in this study, 2,4,6-
trimethylphenol has been observed to be more stable, especially in an air

atmosphere, than 2,6-dimethylphenol, as will be discussed in the next section.
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Figure 4.  Aliphatic/Aromatic hydrogen ratio by TH NMR of the thermal
treatment products from the t-butylphenols versus treatment
severity index.

For the treatments in air, the temperature range was extended to lower
temperatures (i.e. 150°C) and longer reaction times. The 2,6-dimethylphenol
and 2,4,6-tri-t-butylphenol were selected for low temperature treatments in air
because they were identified as the most and the least stable compounds,
respectively, in the initial stages of this study. The NMR analysis of the reaction
products showed that 2,6-dimethylphenol, which is remarkably stable in a
nitrogen atmosphere at high temperatures (400-450°C), reacts with oxygen as

result of a prolonged treatment ( for 93 h) at a low temperature of 150°C.
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The NMR analysis of the products from 2,4,6-tri-t-butylphenol obtained under
the same conditions (150°C-93 h) indicated a comparable extent of degradation
to that of 2,6-dimethylphenol. This observation shows that, in contrast to the
substantial difference in the stability of these compounds at high temperatures
in nitrogen, their reactivity in air during prolonged treatment at low temperatures
appears to be comparable. The treatment of 2,6-dimethylphenol and 2,4,6-tri-t-
butylphenol at 400°C for 2 h in air showed, however, a marked difference again
parallel to that observed in nitrogen, indicating a higher reactivity of 2,4,6-tri-t-
butylphenol. This behavior was considered to be due to either a limiting
concentration of oxygen in the reactors and/or a low-activation energy (10-15
kcal) reaction between oxygen and 2,6-dimethylphenol. The chemical changes
associated with the treatment of 2,4,6-tri-t-butylphenol and other t-butylphenols
in air were found to be similar to those observed upon treatment in nitrogen.
The presence of air in the reactors appears to accelerate the thermal

degradation reactions rather than giving rise to different products.

GC-MS Analvsis of Reaction Prod
GC-MS spectra of selected model compounds and their thermal
treatment products were obtained by Mrs. Linda Collins of the Penn State
Chemistry Department using a J&W DB5 capillary column on a Kratos MA-25
magnetic instrument. The spectra were obtained on 0.1 ul samples dissolved in
methylene chloride. The samples, which were introduced into the column
through a cold septumless injection system, were heated rapidly to 60 °C and
then to 270 °C at a rate of 6°C/min. Helium is used as the carrier gas at a flow
rate of 2 ml /min. The effluent from the column was introduced into the
ionization chamber of the mass spectrometer. lonization was carried out by

electron impact (70 eV). The ion beams were scanned from 750 to 50 a.m.u. in
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the mass analyzer. The total ion chromatograms and the mass spectra of the
selected peaks are shown in Appendix D for the treatment products obtained in
a nitrogen atmosphere.

In agreement with the results obtained from the NMR analysis, the GC-
MS data also indicated that the thermal treatment leads to the loss of alkyl
groups from the t-butylphenols. Unsubstituted and methyl substituted phenols
have been identified as major components in all the products obtained from t-
butylphenols. Another general reaction trend, observed parallel to the
dealkylation processes, was the coupling of two or more molecules to form
polynuclear aromatic compounds with high degrees of alkyl substitution. Figure
5 shows some of the polynuclear aromatic compounds identified as molecular
ions in the mass spectra of the 400 °C-2 h products from 2,6-di-t-butylphenol
(h), 2,6-di-t-butyl-4-methylphenol (g) , and 2,4,6-tn-t-butylphenol (i, j, k). it
should be noted that these identifications are not unambiguous and shouid not
exclude possible isomers but provide approximate structures for the high-
molecular-weight species formed during thermal degradation. These
compounds can be considered to be the contiguous precursors to the solids
formed from t-butylphenols. As was observed by NMR analysis (and visual
inspection of the reaction products), the GC-MS spectra of the products showed
that the extent of thermal degradation in nitrogen increased with the increasing
degree of alkyl substitution on the t-butylphenols. A higher propensity for
dealkylation and subsequent aromatic polymerization seems to result from a

higher degree of alkyl substitution on the t-butylphenols.
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Figure 5. Polynuclear aromatic compounds identified as molecular ions in the
mass spectra of the 400 °C-2 h products from 2,6-di-t-butylphenol (h),
2,6-di-t-butyl-4-methylphenol (g) , and 2,4,6-tri-t-butylphenol (i, j, k)
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The GC-MS data on the products obtained in an air atmosphere are
presented in Appendix E. One of the important results obtained by the GC-MS
analysis was the elucidation of the critical effect of the air atmosphere on the
thermal stability of 2,6-dimethylphenol. The comparison of the spectra of the
products from 2,6-dimethylphenol obtained in nitrogen and air atmospheres at
different temperatures provided some insights into the chemical reactions
involved in thermal degradation of this compound. It was seen that the
treatment in air at 150°C for 93 h gave rise to a methylated product,
trimethylphenol, at low concentrations, indicating the demethylation of 2,6-
dimethylphenol. The treatment in air at a higher temperature (250°C-24 h) gave
rise to the coupling of the 2,6-dimethylphenol molecules via most probably a
biaryl linkage between the para positions (Figure 6a), in addition to the
demethylation and methylation reactions seen at 150°C. The absence of such
a coupling in the product obtained in nitrogen suggested that the unsubstituted
para position of 2,6-dimethylphenol is activated by oxygen at 250°C. The
treatment in air at 400°C for 2 h also gave rise to the coupling via the
unsubstituted para position on the molecule. A similar coupling of the
molecules in nitrogen atmosphere was observed when the compound was
treated at 450°C for 4 h. As different from the coupling observed at 400°C, the
joined aromatic rings in the 450°C product obtained in nitrogen appeared to
have lost one phenolic OH group and contain a methylene connection in
addition to the biaryl linkage (Figure 6b). Some coupled rings formed in air at
450°C also contain methylene linkages and they appear to be more heavily
substituted by methyl groups (Figureéc and 6d). it should be noted the highest

molecular weight compound produced in air shown in Figure 6d contains both
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Figure 6. Molecular ions identified in the products from 2,6-dimethyl phenol
obtained at 250°C-24 h and 400°C-2 h in air (a); 450°C-4 h in
nitrogen (b); and 450°C-4 h in air (c,d).
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phenolic groups and a single biaryl linkage, suggesting again the activation of
the para position in 2,6-dimethylphenol by oxygen.

The formation of the coupled rings via linking the unsubstituted para
positions of 2,6-dimethylphenol prompted the idea that the substitution of the
para hydrogen by a methy! group may lead to an improved thermal stability.
Therefore, 2,4,6-trimethylphenol was added to the suite of alkylated phenols to
test also the hypothesis that methylphenols are more stable than corresponding
butyiphenols. The results of the thermal treatment of 2,4,6-trimethyiphenol did,
in fact, show that this compound was the most stable compound among the the
alkylated phenols treated in nitrogen and in air. This observation suggests that
the blocking of the para position of 2,6-dimethylphenol increased the thermal
stability in both air and nitrogen atmospheres. Also, the earlier finding that the
methyiphenols are more stable than butylphenols has been confirmed. It is
interesting to note that the addition of a t-butyl group to the para position of 2,6-
di-t-butylphenol causes a substantial reduction in thermal stability. The reversal
of this trend in methylphenols indicates the different effects of butyl and methy!

groups on the thermal decomposition reactions.
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Task 2, Separation and Analysis of Fuel Fractions

Both petroleum- and coal-derived JP-8 fuels were separated into five
distillate fractions using a fractional distillation apparatus. The distillation data
on the fractionation of 500 mi each of the petroleum- and coal- derived JP-8 are

given in Table 3.

Table 3. Yield of distillate fractions from petroleum- and coal-derived JP-8.

TEMPERATURE PETROLEUM JP-8 COAL JP-8
YIELD, VOL % YIELD, VOL%
IBP-165°C 8.3 27.0
165-185°C 22.2 14.9
185-215°C 32.8 22.2
215-240°C 22.9 17.1
240+°C 13.8 18.8

The fuel fractions and some products from thermal treatment in nitrogen
were analyzed by GC-MS on a Kratos MS-80 RFA high resolution apparatus. A
fused silica capillary column (HP-17, 0.25 mm i.d x 30 m) was used for
chromatographic separation. The column temperature was programmed from
40°C to 280°C at a rate of 4°C/min after a five minute isothermal period. The
ionization mode on the mas spectrometer was electron impact (70 eV). The
results of the GC-MS analysis of the petroleum-derived JP-8 fractions are given
in Figures 7-10 and Tables 4-7; and coal-derived JP-8 fractions in Figures 11-
14 and Tables 8-11. The data on the thermally treated fuel fractions are given
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in Figures 15 and 16 and Tables 12 and 13. The peak scan numbers given in
the tables correspond to the peak numbers shown in the respective total ion
chromatograms.

The GC-MS data show that the distillate fractions of the petroleum-
derived JP-8 consist of a complex mixture of a number of compounds. Most of
the major compounds identified were found be paraffinic. The paraffinic nature
of the the fuel fractions was evident from the characteristic fragmentation pattern
of paraffins in the mass spectra, although some long-chain paraffins do not
show molecular ions, which makes it difficult to determine the carbon number.
Nevertheless, the GC-MS analysis (Figures 7-10 and Table 4-7) indicated
unambiguously that the major components of the distillate fractions consist
principally of Cg - C17 long-chain paraffins and of alkylbenzenes and
alkylnaphthalenes at relatively low concentrations.

The distillate fractions of the coal-derived JP-8 appeared to a have a
more complex composition than those of the petroleum-derived JP-8. This
observation was most apparent in the comparison of the 240°C+ fractions of the
the two fuels. In contrast to long-chain paraffinic character of the petroleum-
derived JP-8, the distillate fractions of the coal-derived fuel appeared to contain
monocyclic and bicyclic alkanes and some hydroaromatic compounds as major
components. As shown in Figures 11-13 and Tables 8-11, the distillate
fractions of the coal-derived JP-8 contain high concentrations of alkyl-
substituted cyclohexanes and decalins as well as alkyl-substituted tetralins.

The thermal treatment of 215-240 °C fraction of both petroleum- and
coal- derived JP-8 at 250°C for 6 h in nitrogen did not appear to cause any
significant change in the chemical composition of these fractions as far as the
major components are concerned. This is evident from the comparison of the

(Text continues on page 43.)
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Table 4. Components of the 165 - 185 °C fraction of the petroleum-derived jet

fuel.

Peak Molecular Compounds
Scan No. lon Mass Identified

60 128 Cg H2o
149 128 Cg Hago
213 142 C19 H22
300 142 C19 H22
342 106 Ca2 - benzene
413 142 n-Cq H22
446 156 C11 Hz4
568 156 C11 Hag
602 120 C3 - benzene
679 156 n -C11 Ha4
699 120 C3 - benzene
809 120 C3 - benzene
929 170 n-Cy2Hzg
943 134 C4 - benzene
1161 184 n-Ci3 Hog
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Table 5. Components of the 185 - 215 °C fraction of the petroleum-derived jet

fuel.
Peak Molecular Compounds
Scan No. lon Mass Identified
416 142 n-Cqg H22
573 156 C11 H24
686 156 n - Cqq H2g
823 168 Cs - cyclohexane
170 C12 Hag
853 168 Cs - cyclohexane
936 170 n-Ci2 Hog
941 184 C13 Hag
947 184 C13 Hzg
1063 198 C14 H3o
1168 184 n-Cq3 Hag
1385 198 n - Cq4 Hap
1628 142 C1 - naphthalene
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Table 6. Components of the 215 - 240 °C fraction of the petroleum-derived jet

fuel.

Peak Molecular Compounds

Scan No. lon Mass Identified

414 142 n-Cqg Hz22

448 156 C11 Ha4

570 156 C11 H2g

683 156 n-Cqy1 Hag

714 170 C12 Hzg

730 170 C12 Hag

805 168 Ceg - cyclohexane

828 170 C12 Hag

935 170 n-Cy2 H2e

940 184 C13 Hag

964 184 Ci3 Hzg
1061 198 C14 H3g
1067 184 Ci3 Hzg
1089 184 C13 Hzg
1099 168 Ce - cyclohexane
1167 184 n-Cy3 Hag
1281 198 Ci14 H3p
1297 212 C1s Ha2
1382 198 n-Ci4 H3p
1472 212 C1s Ha2
1585 212 n -Cq5 H32
1622 142 C1 - naphthalene
1682 142 C1 - naphthalene
1777 226 Cig H3q
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Table 7. Components of the 240 °C + fraction of the petroleum-derived jet fuel.

Peak Molecular Compounds
Scan No. lon Mass Identified

932 170 n-Cq2 Hzg
1060 184 C13 Hag
1165 184 n-Cy3 Hog
1284 184 C13 Hag
1299 212 C1s5 Ha2
1384 198 n-Cqi4 H3p
1476 226 C1i6 H3as
1590 212 n-C 45 H32
1631 142 C1 - naphthalene
1690 142 C1 - naphthalene
1784 226 n-Cig H3g
1907 156 C2 - naphthalene
1967 240 C17 H3e
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Table 8. Components of the 165 - 185°C fraction of the coal-derived jet fuel.

Peak Molecular Compounds
Scan No. lon Mass
Identified
82 112 Ca2 - cyclohexane
186 126 C3 - cyclohexane
247 126 C3 - cyclohexane
310 126 C3 - cyclohexane
428 140 C4 - cyclohexane
562 138 Decalin isomer
609 120 C3 - benzene
727 138 Decalin
846 152 C1 - decalin
880 138 Decalin
894 134 C4 - benzene
925 152 C2 - decalin
1186 132 C1 - indane
1239 132 Tetralin
1465 146 C1 - tetralin
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Table 9. Components of the 185 - 215°C fraction of the coal-derived jet fuel.

Peak Molecular Compounds

Scan No. lon Mass Identified

310 126 C3 - cyclohexane

426 140 C4 - cyclohexane

562 138 Decalin isomer

728 138 Decalin

847 152 C1 - decalin

880 138 Decalin

903 152 C1 - decalin

924 152 C1 - decalin

934 170 C12 Hag paraffin
1142 132 C4 - indane
1186 132 C1 - indane
1239 132 Tetralin
1465 146 C1 - tetralin
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Table 10. Components of the 215 - 240°C fraction of the coal-derived jet fuel.

Peak Molecular Compounds
Scan No. lon Mass Identified

720 138 Decalin

841 152 C1 - decalin

897 152 C1 - decalin

919 152 C1 - decalin

929 170 C12 Hzg paraffin
1005 166 C2 - decalin
1029 166 C2 - decalin
1132 166 C2 - decalin
1163 166 C2 - decalin

184 C13 Hag paraffin

1181 132 C1 - indane
1234 132 Tetralin
1258 180 C3 - decalin
1328 146 C1 - tetralin
1352 180 Cj3 - decalin
1382 198 C14 H3p paraftin
1461 146 Cs - tetralin
1555 146 C1 - tetralin
1581 194 C4 - decalin
1634 174 C3 - tetralin
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Table 11. Components of the 240°C + fraction of the coal-derived jet fuel.

Peak Molecular Compounds

Scan No. lon Mass Identified

1243 166 C2 - decalin
184 C13 Hzg paraffin

1434 180 Cj3 - decalin

1466 198 C14 H3p paraffin

1544 146 C1 - tetralin

1665 194 C4 - decalin

1674 212 C1s Ha2 paraffin

1829 192 Perhydrophenanthrene

1838 190 Cg - benzene

1867 192 Perhydrophenanthrene
226 C16 H3s paraffin

1934 206 C1- perhydrophenanthrene

2012 268 C19 Hag paraffin

2051 240 C17 H3g paraffin
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Table 12. Components of the 215 - 240 °C fraction of the petroleum-derived
jet fuel JP-8 heat treated at 250°C for 6 h in a N2 atmosphers.

Peak Molecular Compounds
Scan No. lon Mass Identified
681 156 n-Cq1 Hag
935 170 n-Cq2 Hog
940 184 C13 Hag
1063 198 C14 H3p
1069 184 C13 Hag
1169 184 n-Cy3 Hag
1284 198 C14 H3g
1301 212 C1s H32
1386 198 n -C14 H3o
1475 212 Cis5 H32
1589 212 n-Cis H32
1626 142 C1 - naphthalene
1686 142 C1 - naphthalene
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Table 13. Componenis of the 215 - 240°C fraction of the coal-derived jet fuel
JP-8 treated at 250°C for h under a N2 atmosphere.

Peak Molecular Compounds
Scan No. lon Mass Identified
714 138 Decalin
837 152 C4 - decalin
894 152 C4 - decalin
915 152 C4 - decalin
927 170 C12 Hag paraffin
1003 166 C2 - decalin
1027 166 C2 - decalin
1130 166 C2 - decalin
1163 166 C2 - decalin
184 C13 Hag paraffin
1179 132 C1 - indane
1232 132 Tetralin
1256 180 C3 - decalin
1328 146 C1 - tetralin
1351 180 C3 - decalin or
C4 - bicyclohexyl
1382 198 C14 Hgg paraffin
1399 146 C1 - tetralin
1460 146 C1 - tetralin
1497 146 C1 - tetralin or
Cz - indane
1553 146 C4 - tetralin or
C2 - indane
1557 160 C2 - tetralin
1622 160 C2 - tetralin
1632 174 C3 - tetralin
1673 174 C3 - tetralin
1751 190 Cs - benzene
1778 192 Perhydrophenanthrene
226 C16 Ha4 paraffin
1846 188 C4 - tetralin
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GC-MS data on the treated fractions with those on the original (Figures 15 and
16 compared to Figuies 9 and 13 and Tables 12 and 13 compared to Tables 6
and 10.)
Task 3. Thermal Effects on Whole and Fractionated Fuels

The whole petroleum- and coal-derived JP-8's were treated at 300°C for
6 hours in nitrogen and air atmospheres and at 350°C for 4 hours in a nitrogen
atmosphere without the formation of visible solids. The fuels treated at 350°C
showed, however, a separation of some sediments in small quantities upon
storage for two days. The sediments were separated by centrifugation and
prepared as methylene chloride and carbon tetrachloride solutions for analysis
by GC-MS. Although the sediments appeared to be dissolved, at least partially,
by these solvents and the maximum injector port and column temperatures
(280°C) were used in the analyses, no peaks were observed in the GC-MS
analyses probably because of the very large size of the molecules constituting
the sediments. The small quantity of the sediments that could be separated did
not allow an NMR analysis. The treatment of the petroleum- and coal-derived
JP-8's at 425°C for 1 h in a nitrogen atmosphere produced small quantities of
solids. A distinct change that was produced by thermal treatment in every case
was the discoloration of the fuels, the degree of which depends upon the
starting fuel and the severity of the thermal treatment. The differences in the
extent of discoloration were quantified by using a spectrophotometer. In
spectrophoto-metric measurements, percent transmittance of 520 nm
wavelength light through the samples was determined based on 100%
transmittance by distilled water. It is considered that percent transmittance will

be inversely related to the extent of thermal degradation, since large molecular-

43




weight thermal degradation products are considered to be responsible for the
abscrption of the visible light. Figure 17 shows % transmittance of the thermal
treatment products from petroleum- and coal-derived fuels at three different
temperature-time combinations. It can be seen that in a nitrogen atmosphere %
transmittance of the products from petroleum-derived JP-8 (JP-8P) is higher
than that from coal-derived JP-8 (JP-8C) in every case with the difference
increasing with the increasing temperature. This observation suggests that JP-
8P is slightly more stabie than JP-8C and that the difference in thermal stability
increases with the increasing temperature.

Figure 18 compares percent transmittance from the products of JP-8P
and JP-8C obtained in nitrogen and air atmospheres at 300°C for 6 h. It shows
that the presence of air reduces the thermal stability of both fuels, however, the
coal-derived JP-8 appears to be significantly more susceptible to thermal
degradation in an air atmosphere than the petroleum-derived JP-8. In addition
to high temperatures, the presence of an oxidizing atmosphere is comparatively
more harmful to the thermal stability of the coal-derived JP-8. Although the
coal-derived JP-8 appears to have a similar thermal stability to that of
petroleum-derived JP-8 in an inert atmosphere at low temperatures, the
constituents of the coal-derived JP-8 seem to be more labile at high
temperatures especially in an oxidizing atmosphere. For a better comparison
of the two fuels, their distillate fractions were heat treated at 250°C and 300°C
for 6 h in nitrogen and air atmospheres.

As a result of the heat treatments different fuel fractions showed varying
extents of discoloration from pale yellow to brown and black without the
formation of any visible solids. The spectrophotometer was used again to

quantify these differences in the absorption of the visible light (520 nm).
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Figure 17. Percent transmittance from petroleum-derived and coal-derived
JP-8 treated in nitrogen under different conditions.
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JP-8 treated in nitrogen and air at 300°C for 6 h.
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Figure 19 shows percent transmittance of the thermal treatment products
from the distillate fractions of petroleum- and coal-derived JP-8 obtaired at
250°C in a nitrogen and an air atmosphere. It can be seen that the presence of
air substantially reduced the thermal stability of all the distillate fractions from
the two fue's but there are significant differences in the extents of the observed
changes in thermal stability. Figure 19a shows that the high boiling fractions of
the petroleum-derived JP-8 are more susceptible to thermal degradation in air
than low boiling fractions. Figure 19b, on the other hand, shows that especially
the low-boling distillate fractions of the coal-derived JP-8 are much less stable
compared to their petroleum fuel counterparts. This observation suggests that
the relatively low thermal stability of the coal-derived JP-8 in air can be
attributed to the low stability of the low-boiling fractions of the coal derived-fuel.

Figure 20 shows percent transmittance of the thermal treatment products
obtained from the distillate fractions treated in nitrogen and air atmospheres at
300°C for 6 h. Similar to the trends seen Figure 19, especially the low-boiling
distillate fractions of the coal-derived JP-8 seem to be much less stable than
those of the petroleum-derived JP-8 also at 302°C . As different from the trends
seen at 250°C, however, Figure 20 indicates that the 215-240°C fractions of
both fuels appear to be the least stable fractions in the presence of a nitrogen
atmosphere. The comparison of the thermal stability of the whole fuels (Figure
18) and the distillate fractions at 300°C in nitrogen and in air (Figure 20) shows
that the coexistence of the distillate fractions in the constitution of the whole
fuels results in a higher thermal stability than that of the most stable distillate

fraction.
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Figure 19. Percent transmittance from petroleum-derived (a) and coal-
derived (b) JP-8 treated in nitrogen and in air at 250°C for 6 h.
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Figure 20. Percent transmittance from petroleum-derived (PD) and coal-
derived (CD) JP-8 treated in nitrogen and in air at 300°C for 6 h.
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APPENDIX A

APPEARANCE OF THE THERMAL TREATMENT

PRODUCTS OF ALKYLATED PHENOLS
OBTAINED IN A NITROGEN ATMOSPHERE
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APPENDIX B
APPEARANCE OF THE THERMAL TREATMENT

PRODUCTS OF ALKYLATED PHENOLS
OBTAINED IN AN AIR ATMOSPHERE
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APPENDIX C

NMR SPECTRA OF THE THERMAL TREATMENT
PRODUCTS OF ALKYLATED PHENOLS
OBTAINED WITH AND WITHOUT THE USE OF
GLASS LINERS
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TH NMR spactra of the products {rom 2, 6 di-t-butylphenol treated at
450°C for 1 h in reactors with (top) and without (bottom) glass liners.
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13C NMR spectra of the products from 2, 6 di-t-butylphenol treated at
450°C for 1 h in reactors with (top) and without (bottom) glass liners.
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1H NMR spactra of the products from 2 t-butylphenol treated at 350°C
for 2 h In reactors with (top) and without (bottom) glass liners.

62




-
—
——
o——t
———
—di
—li
:

==
—
—ft
by
e
[ e

. 13C NMR spectra of the products from 2 t-butylphenol treated at
350°C for 2 h in reactors with (top) and without (bottom) glass liners.
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1H NMR spectra of the products from 2,6 dimethylphenol treated
at 450°C for 1 h in reactors with (top) and without (bottom) glass
liners.
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13C NMR spectra of the products from 2,6 dimethylphenol
treated at 450°C for 1 h in reactors with (top) and without

(bottom) glass liners.
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TH NMR spectra of the products from 2,6 di-t-butyiphenol treated
at 400°C for 2 h in reactors with (top) and without (bottom) glass
liners.
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13 C NMR spectra of the products from 2,6 di-t-butylphenol treated
at 400°C for 2 h in reactors with (top) and without (bottom) glass

liners.
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TH NMR spectra ot the products from 2,6 di-t-butyl-4-methyl-
phenol treated at 400°C for 2 h in reactors with (top) and
without (bottom) glass liners.
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13C NMR spectra of the products from 2,6 di-t-butyl-4-methy!-
phenol treated at 400°C for 2 h in reactors with (top) and
without (bottom) glass liners.
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TH NMR spectra of the products from 2,4,6 tri-t-butyl-
phenol treated at 450°C for 1 h in reactors with (top) and
without (bottom) glass finers.
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13C NMR spectra of the products from 2,4,6 tri-t-butyl-
phenol treated at 450°C for 1 h in reactors with (top) and
without (bottom) glass liners.
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TH NMR spectra of the products from benzofuran treated at
450°C for 1 h in reactors with (top) and without (bottom) glass

liners.
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13C NMR spectra of the products from benzofuran treated at
450°C for 1 h in reactors with (top) and without (bottom) glass
liners.
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'H NMR spectra of the products from 2, 6 di-methylphenol treated at
150°C for 93 h In air (top) and in nitrogen (bottom).
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13C NMR spactra of the products from 2, 6 di-methylphenol treated
at 150°C for 93 h in air (top) and in nitrogen (bottom).
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TH NMR spectra of the products from 2, 4,6 tri-t-butylphenol treated at
150°C for 93 h in alr (top) and In nitrogen (bottom).
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13C NMR spectra of the products from 2, 4, 6 tri-t-butylphenol treated
at 150°C for 93 h in air (top) and in nitrogen (bottom).
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1H and 13C NMR spectra of the products from 2, 6 dimethylphenol
treated at 400°C for 2 h in air.

78




REENLLALARARAR Y
CCCCRLELTLTTTR

m u(i.)i“:: (1107 ,m

-
~ ~ Ljﬂja
i ) ) 1. [Y) ) Y Y0 s .« Y 3.0 1.8 20 30 [0 K
S ’ oon rg Py YA
' —— e
.

4 PLAISON AIR 84003 FI-0LPILYY. 007

o R T 119

. JJ, _L - .MJJM.[J] N ostonielice) L“, ‘,| e

M 4 Y T Y Y Y v T T Y Y
" 180 1 140 (: ) e 1 108 ” (] e “

H and13C NMR spectra of the products from 2, 4, 6 tri-t-butylpheno!
treated at 400°C for 2 h in air.
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TH NMR spectra of the untreated 2,6 di-t-butyl-4-methylphenol

(bottom) and its products obtained by treatment at350°C for 2 h in
nitrogen (middle) and in air (top).
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13C NMR spectra of the untreated 2,6 di-t-butyl-4-methylphenol
(bottom) and its products obtained by treatment at350°C for 2 hin
nitrogen (middle) and in air (top).
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1H and 13C NMR spactra of the products from 2 t-butylphenol
treated at 350°C for 2 h in air.
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1H and 13C NMR spectra of the products from 2,6 di-t-butylphenol
treated at 400°C for 2 h in air.
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1H and 13C NMR spaectra of the products from 2,6 di-t-butyl-4-
methylphenol treated at 400°C for 2 h in air.
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1H and 13C NMR spectra of the products from 2,4,6 tri-t-
butylphenol treated at 350°C for 2 hin air.

85




APPENDIX D
GC-MS DATA ON THE THERMAL TREATMENT

PRODUCTS OF ALKYLATED PHENOLS
OBTAINED IN A NITROGEN ATMOSPHERE
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APPENDIX E
APPEARANCE OF THE THERMAL TREATMENT

PRODUCTS OF ALKYLATED PHENOLS
OBTAINED IN NITROGEN AND AIR ATMOSPHERES
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Chromatograms of the products from 2, 6 di-methylphanol treated
at 150°C for 93 h In alr (top) and in nitrogen (bottom) showing the
compounds.identified by MS.
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Chromatograms of the products from 2, 6 dimethylphenol treated
at 250°C for 24 h In alr (top) and In nitrogen (bottom) showing the
compounds identified by MS.

119

~




140

90

L 1]

10

60

S0

40

30

20

10

20

Scan

100

90

80

70

60

$0

40

- 30

20

10

Scan
R.T.

TIC
i 191414080
usc-@fj-cua
. . H
~
v /
oy
—
CHy CH.’J
-
Y (O~O)
HO H
- | °
CHg CHg CH,
© LA WL
. CH,
HaC £H
3
H l‘lQ
~. 4§ H )
7 N . N
L4 1 L S ] L] R % v 17‘ 1 Ll L) L) L4 ’ rrrrrr Y T , ' ] gt ~r ~-r
100 200 300
5:50 17:46 25:42
th -
—1 'rxﬁ' 455555328
- %c»@—cﬂa .'
!
o /, H |
_ .
i
—
CHy Gy
/ bn
-~ / Hac 6H3
n
"ﬁ/k l/ H
AL
aﬁ Y ¥  Zmume Sasumn e Sunema [ L ™ -t
200
16:18

Chromatograms of the products from 2, 6 dimethyiphenol treated

at 400°C for 2

h In alr (top) and the separated liquid product

(bottom) showing the compounds identified by MS.
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Chromatograms of the products from 2, 6 dimethylphenol treated
at 450°C for 4 h In air (top) and in nitrogen (bottom) showing the
compounds identified by MS.
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Chromatograms of the products from 2, 4, 6 tri-t-butylphenol
treated at 150°C for 93 h in air (top) and in nitrogen (bottom)
showing the compounds identified by MS.
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Chromatograms of the products from 2, 4, 6 tri-t-butylphenol
treated at 250°C for 24 h in air (top) and In nitrogen (bottom)
showing the compounds identified by MS.
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Chromatograms of the products from 2, 4, 6 trimethylphenol
treated at 450°C for 1 h in air (top) and in nitrogen (bottom).
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Chromatograms of the products from 2, 4, 6 trimethyiphenol
\reated at 450°C for 2 h in air (top) and in nitrogen (bottom).
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Chromatograms of the products from 2, 4, 6 trimethylphenol (top)
and 2,4,6 %rl-t—butylphenol (bottom).treated at 450°C for 4 h in

air.
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Chromatograms of the products from 2, 4, 6 trimethyiphenol (top)
and 2,4,6 tri-t-butylphenol (bottom).treated at 450°C for 4 h in
nitrogen.
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